Understanding HIV resistance

Andrew Tomkins
North Manchester General Hospital
13th January 2020
Objectives

• Pass the DipHIV
 - Background to ARV resistance
 - Practice OSCE cases
 - This focuses specifically on the OSCE, it’s not everything you need to know about resistance in clinical practice!
Resistance in Dip HIV

- BHIVA 2016 Monitoring Guidelines
 - Mainly: 3.11; 3.3; 4.3.3.3; 4.5.2.3; 5.10; Appendix 1
- BHIVA 2015 Antiretroviral Guidelines
 - Mainly: 7.0-7.5
- Beware of straying away from the guidelines, regardless of your individual clinic’s policy
- Other resources: www.iasusa.org Stanford
Basics
Basics (1)

- HIV exists as a quasispecies
- High replication rate and error prone
- Mutations arise
- Mutation → amino acid substitution → altered protein structure, e.g. M184V
- Inadequate drug pressure → DRM selected for → overt virological failure OR gradual accumulation of additional resistance mutations.
Basics (2)

• Ongoing virus replication under drug pressure → evolution of resistance

• Once drug pressure removed, resistant mutants outgrown by fitter wild-type virus → become undetectable by routine tests

• Resistant mutants persist at low frequency in plasma & are “archived” in latently infected cells
Key Terminology

- **Viral fitness**: ability of a virus to out-compete another
- **Replication capacity**: ability of the virus to replicate in comparison to another virus
- **Signature Mutation**: mutation typically associated with resistance to a particular drug
- **Cross resistance**: resistance to drugs other than the drug that selected the mutation
- **Hypersusceptibility**: resistance to 1 drug can lead to ↑ susceptibility to another
Types of resistance

• **Transmitted resistance:** ARV resistance of HIV in individuals who have never received treatment
 – Takes time to revert back to WT: M184V lost rapidly (1yr), NNRTI/PI mutations (2.7-5.8yrs), most TAMs lost slowly
 – Most is TAMs, esp T125rev
 – UK TDR stable at 10%

• **Acquired drug resistance:** resistance of HIV to drugs in individuals on treatment
Guidelines for starting ART with TDR/no resistance test yet

• **BHIVA monitoring:** regimen with high barrier to resistance (e.g. PI/b) should probably be selected when low minority variants compromising susceptibility to NNRTIs detected

• **EACS 2016:** If ART has to start before the resistance test results are available, include a PI/b in order to increase the barrier to resistance of the regimen – evolving evidence - TDF (or TAF) + FTC (or 3TC) + DRV/b + integrase inhibitor

• **DHHS 2016:** Avoid NNRTI-based regimens if need to start ART before RT available; consider DRV/r or Dolutegravir 3rd agent
Tests for Drug Resistance
Tests for Drug Resistance

• Genotype
 – *In vitro* MOLECULAR assessment of changes in the HIV nucleoside sequence associated with resistance

• Phenotype
 – *In vitro* BIOLOGICAL assessment of HIV growth in the presence of drug (IC$_{50}$ = concn of drug to impair growth by 50%). Threshold for clinical significance varies (2.5-5 fold)
NRTI Resistance Mutations:

NNRTI Resistance Mutations:
- Y181C

Other Mutations:
- None

Nucleoside RTI

<table>
<thead>
<tr>
<th>Drug</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>lamivudine (3TC)</td>
<td>High-level resistance</td>
</tr>
<tr>
<td>abacavir (ABC)</td>
<td>High-level resistance</td>
</tr>
<tr>
<td>zidovudine (AZT)</td>
<td>High-level resistance</td>
</tr>
<tr>
<td>stavudine (D4T)</td>
<td>High-level resistance</td>
</tr>
<tr>
<td>didanosine (DDI)</td>
<td>High-level resistance</td>
</tr>
<tr>
<td>emtricitabine (FTC)</td>
<td>High-level resistance</td>
</tr>
<tr>
<td>tenofovir (TDF)</td>
<td>Intermediate resistance</td>
</tr>
</tbody>
</table>

Non-Nucleoside RTI

<table>
<thead>
<tr>
<th>Drug</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>efavirenz (EFV)</td>
<td>Intermediate resistance</td>
</tr>
<tr>
<td>etravirine (ETR)</td>
<td>Intermediate resistance</td>
</tr>
<tr>
<td>nevirapine (NVP)</td>
<td>High-level resistance</td>
</tr>
<tr>
<td>rilpivirine (RPV)</td>
<td>Intermediate resistance</td>
</tr>
</tbody>
</table>

RT Comments

NRTI
- M41L is a TAM that usually occurs with T215Y. Together, M41L and T215Y confer high-level resistance to AZT and d4T and intermediate-level resistance to ddi, ABC and TDF. However, viruses with M41L + T215Y + M184V will exhibit intermediate-level resistance to AZT and d4T and low-level resistance to TDF.
- D67N is a nonpolymorphic TAM associated with low-level resistance to AZT and d4T. When present with other TAMs, it reduces susceptibility to ABC, TDF and ddi.
- T69N is a relatively non-polymorphic mutation weakly selected in patients receiving NRTIs. Their effects on NRTI susceptibility have not been well studied.
- K70R causes intermediate-level resistance to AZT and possibly low-level resistance to d4T and TDF.
- M184V/I cause high-level resistance to 3TC and FTC and low-level resistance to ddi and ABC. However, M184V/I are not contraindications to continued treatment with 3TC or FTC because they increase susceptibility to AZT, TDF and d4T and are associated with clinically significant reductions in HIV-1 replication. In combination with K101E or E138K, M184I synergistically reduces RPV susceptibility.
- T215F is a TAM that causes intermediate/high-level resistance to AZT and d4T and low-level resistance to ABC, ddi and TDF. Compared with T215Y, T215F occurs more commonly with the Type II TAMs (D67N, K70R, and/or K219E) and in this context, it affects susceptibility to TDF, ABC, and ddi less markedly than T215Y.
- K219Q/E are accessory TAMS associated with reduced susceptibility to AZT and possibly d4T.

NNRTI
- Y181C is a nonpolymorphic mutation selected in patients receiving NVP, ETR and RPV. It reduces susceptibility to NVP, ETR, RPV, and EFV by >50-fold, 5-fold, 3-fold, and 2-fold, respectively. Although Y181C itself reduces EFV susceptibility by only 2-fold, it is associated with a reduced response to an EFV-containing regimen because viruses with this mutation often harbor additional minority variant NNRTI-resistance mutations. Y181C has a weight of 2.5 in the Tibotec ETR GSS.
Advantages & Limitations of Genotypic Resistance Testing

- Cost
- Reliability with lower viral loads (<200 copies/mL)
- Ability to detect minority populations of resistant virus if < 20% of the sample (common after drug discontinuation)
- Resistant strains that are in sanctuary sites may not be detected
- Role of Next Generation/Deep Sequencing
Baseline resistance test

• Genotypic resistance test: RT & protease
• Sample closest to diagnosis
• Repeat test prior to ART only if ?ART exposure or superinfection
• Integrase only if other baseline TDR mutations or ?transmitted INSTI resistance
• Genotypic tropism test performed just prior to starting MVC
Resistance test for failure/suboptimal response to initiation

- All genes encoding proteins are targeted by current & future treatment agents
- Review all previous drug resistance reports
- Cumulative Stanford HIV drug resistance report
- Repeat tropism test if fail on MVC
- Lower threshold in pregnancy
- Sample whilst on failing regimen or within 2-4/52 of discontinuation
HIV Tropism
HIV Tropism Patterns

- **CCR5 tropic (R5)**
- **CXCR4 tropic (X4)**
- **Dual tropic**
- **Mixed tropism**
- **Dual/Mixed (D/M)**
Tropism test

• Just prior to starting/switching to MVC
• Genotypic test (phenotypic not in UK)
• Can do on PBMCs if VL<500 copies/mL
 – Technical difficulties of working with PBMCs
 – Sensitivity of PBMCs picking up minority X4 virus
• At failure, 2/3 have tropism switch to X4
• If remain R5 tropic, 1/3 have MVC-specific resistance - no genotypic signature mutations (phenotypic resistance) so can’t test for
Important mutations
Thymidine Analogue Mutations (TAMs)

- **d4T or AZT**
 - **COMMONER**
 - Common with dual therapy (incl AZT/3TC)
 - 41L
 - 210W
 - 215Y
 - Higher-level ZDV and d4T resistance
 - More NRTI cross-resistance
 - Including TDF
 - Less reversal with M184V
 - 67N
 - 70R
 - 219Q/E
 - Lower-level ZDV and d4T resistance
 - Less NRTI cross-resistance
 - More reversal with M184V

- Common with AZT monotherapy
What does it mean?

• TAMs still commonest *transmitted* mutations in UK
• In treated individuals, if there are TAMs there may be other mutations lurking around
• 2 NRTI may not be robust enough and therefore will not support:
 – NNRTI (TMC-C227)
 – Integrase inhibitor (SWITCHMRK-1 & -2)
NRTI: M184V/I

• Selected by 3TC/FTC & to a lesser extent ABC
• High level resistance (>100 fold loss of susceptibility) to 3TC/FTC
• With 1+ TAM – ABC resistance
• Increases susceptibility to ZDV, d4T and TDF especially in presence of TAMs (especially 215)
• Appears to delay development of TAMs
• Reduces viral replication fitness
Other important NRTI mutations

• **K65R**
 – Selected by TDF and ABC, also d4T and ddI
 – Reduced susceptibility to all non-thymidine NRTIs
 – Increased susceptibility to AZT & d4T (especially in presence of TAMs)
 – Usually preceded by M184V: increases R to ABC but reduces to TDF

• **L74V**
 – Selected by & causes resistance to DDI & ABC
 – Increased susceptibility to AZT & d4T, especially in presence of TAMs

• **Others:** Q151M complex a/w resistance to all NRTIs (least effect on Tenofovir), T69 same when accompanied by TAMs 41, 210, 215
Key NNRTI mutations

50-70% of NNRTI failures have these 2 mutations:

• **K103N**
 – high level resistance to NVP and EFV (1st gen NNRTI)
 – Does not cause ETV or RPV resistance (2nd gen NNRTI)
 – Most common mutation in Europe

• **Y181C**
 – high level resistance to NVP and intermediate to EFV and Etravirine
 – Can cause \textit{hyper-susceptibility to AZT and TDF} esp in presence of TAMs
Resistance to 1st generation NNRTIs

- Prior NNRTI resistance reduces subsequent response to re-introduction of NNRTIs
- Low level K103N may be archived
- Switch quickly to prevent selection of other mutations that may impair response to 2nd gen NNRTI (etravirine)
- Most will be susceptible to ETR; 62\% to Rilpivirine
- Rilpivirine: E138K
Weighting mutation system of ETR RAMs (from DUET Studies)

Relative weight* for individual ETR RAMs

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1.5</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>V901</td>
<td>V106I</td>
<td>L100I</td>
<td>Y181I</td>
<td></td>
</tr>
<tr>
<td>A98G</td>
<td>E138A</td>
<td>K101P</td>
<td>Y181V</td>
<td></td>
</tr>
<tr>
<td>K101E</td>
<td>V179F</td>
<td>Y181C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K101H</td>
<td>G190S</td>
<td>M230L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V179D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V179T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G190A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total weighted genotypic score

- **0–2**: Highest (74.4%)
- **2.5–3.5**: Intermediate (52%)
- **≥ 4**: Reduced (37.7%)

Example: K101H + G190A = weighted score of 2 = highest response

When the genotype report shows a mixture of two or more different substitutions at the same position, only the highest of the individual weight factors for these substitutions is counted when calculating the weighted genotypic score.

Protease Resistance

- Too many to remember!
- D30N, N88D, L90M – ‘historic’ (often unboosted) PIs
- I50L signature mutation of unboosted Atazanavir
- **What’s important**
 - Darunavir usually best option in setting of PI resistance
 - If ≥2 DRV RAMs use BD darunavir rather than OD darunavir
 - DRV RAMs include: I54L/M, G73S,T74P,L76V,V82F,I84A/C/V,L89V
PI mutations

<table>
<thead>
<tr>
<th>MUTATIONS IN THE PROTEASE GENE ASSOCIATED WITH RESISTANCE TO PROTEASE INHIBITORSp,q,r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atazanavir</td>
</tr>
<tr>
<td>L 10 16 20 24 32 33 34 35 45 48 50 53 54 60 62 64 71 73 82 84 85 88 90 93</td>
</tr>
<tr>
<td>+/- ritonaviri</td>
</tr>
<tr>
<td>I E R I I I Q I I Y L L L E V L L C A Y V S M L</td>
</tr>
<tr>
<td>F M F L L Y V M I S T M V T T F</td>
</tr>
<tr>
<td>V I V V C T T L A I</td>
</tr>
<tr>
<td>C T V</td>
</tr>
<tr>
<td>Darunavir/ritonaviri</td>
</tr>
<tr>
<td>V 1 11 32 33 47 50 54 74 76 84 89</td>
</tr>
<tr>
<td>I I I V V M P V Y V</td>
</tr>
<tr>
<td>L</td>
</tr>
</tbody>
</table>

Roughly...

45-55

75-85
Key integrase resistance mutations

• N155H : 10x ↓ RAL susceptibility

• Q148H/R/K: 25x ↓ RAL susceptibility
 • Most common pattern, Q148H + G140S, > 100x ↓ susceptibility to raltegravir
 • Extensive cross resistance between RAL & EVG: mutations at position 155 and 148

• Y143R

• Q148 alone doesn’t affect DTG much but in combination with E138K it does

• Switch off failing RAL/EVG early!
Dolutegravir

• No resistance in Tx naïve studies

• Tx experienced:
 – SAILING: DTG 50 mg OD statistically superior to RAL BD in the proportion of subjects achieving HIV-1 RNA <50 c/mL - lower virologic failure rate
 – VIKING: DTG 50mg BD effective in subjects with RAL &/or EVG resistance & multiple class ARV resistance – virological suppression in 68% at 24/52 & 56% at 48/52

• DTG 50mg **BD** with known INSTI resistance
INSTI mutations

Mutations in the Integrase Gene Associated with Resistance to Integrase Strand Transfer Inhibitors

<table>
<thead>
<tr>
<th></th>
<th>Dolutegravir<sup>aa</sup></th>
<th>Elvitegravir<sup>bb</sup></th>
<th>Raltegravir<sup>cc</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>F 121 E 138 G 140</td>
<td>T 92 F 121 S 147</td>
<td>E 92 T 121 G 148</td>
</tr>
<tr>
<td>Mutations</td>
<td>Y A K A A S</td>
<td>Q G Q G H K</td>
<td>Y H R H C</td>
</tr>
<tr>
<td>Residues</td>
<td>R 263</td>
<td>R 263</td>
<td>R 263</td>
</tr>
</tbody>
</table>

^{aa} Data from the INSTI resistance database.

^{bb} Data from the INSTI resistance database.

^{cc} Data from the INSTI resistance database.
What does BHIVA say? No/Limited resistance

Failure Type
- WT at baseline & no emergent mutation at failure
- WT at baseline & limited emergent resistance (two class NRTI/NNRTI)
- On first line PI/b + 2 NRTI, limited major PI mutation
- Historical NRTI/NNRTI resistance on PI/b regimen

Recommendation
- PI/b based combination. *Consider* restarting existing regimen
- New PI/b + 1, pref. 2 active drugs
- New active PI/b + 1, pref 2 active drugs (1 novel M.O.A)
- Avoid switching the PI/b to INSTI or NNRTI
What does BHIVA say? Multiple Class Failure

Failure Type
- Extensive drug resistance
- Extensive drug resistance + DRV resistance
- Limited/no therapeutic options; fully suppressive regimen cannot be constructed

Recommendation
- PI/b (e.g. DRV/r BD) + 2 (pref 3) fully active agents, 1 with novel MOA
- DTG = INSTI of choice
- Newer agents through research trials
 - Consider recycling NRTIs
 - Avoid discontinuing/interrupting ART
 - If triple class resistance and RAL/ETG resistance – BD DTG.
OSCE cases
Case 1

- David is a 39 year old MSM who was diagnosed with HIV 5 years ago and started on Eviplera. He had wild type virus at baseline and was undetectable for a number of years. He was made redundant from his job 3/12 ago. At his routine clinic appointment his viral load was 4200 copies/mL. Resistance screen shows wild type virus. David is very concerned about his VL and wishes to discuss his ART regimen.

- Please discuss ongoing management with David.
What are you going to ask David?

Tolerability
Adherence
Resistance test
Medication
Absorption
Comorbidities

• Does David have any concerns or specific questions at this point?
What are you going to tell David?

- Reason for failure - poor treatment adherence (DDIs/food interactions/resistance)
- Risks of failure
- Review past ART & resistance tests
- Reason for new regimen being chosen
- Starting new regimen discussion
- Transmission risk with detectable VL
- Adherence support (dosette, timers, apps)
- MDT discussion
- Follow up – adherence nurse, pharmacist, PIL, bloods
- Does David have any questions?
Which regimen?

- BHIVA: virological failure on first-line ART with wild-type virus at baseline & without emergent resistance mutations at failure - switch to a PI/b-based combination ART regimen
Case 1 continued

• David’s friend is on ART including darunavir/b and has problems with diarrhoea. David really doesn’t want to take this – he is concerned about side effects and wants to start back on Eviplera which he has tolerated well for 5 years. Please discuss David’s concerns.
What are you going to tell David about restarting Evipleria?

- Side effects of Darunavir, time for these to settle, help controlling any side effects
- BHIVA: Restarting the previous failing regimen is an alternative option, especially where poor adherence has been identified as the likely cause and has been addressed
- Monitor carefully & repeat VL after 4/52
- If inadequate virological response - resistance testing to detect any archived resistance
Case 2

Sandra is 48 years old and was diagnosed with HIV 10 years ago. Baseline resistance test was wild type. She started on TDF/FTC and Efavirenz 8 years ago and has had a suppressed viral load for a number of years. She was lost to follow up 6 months ago and reattended 3 weeks ago. HIV viral load is 8,800 copies/mL, CD4 540 cell/mm³. Please discuss restarting ART with Sandra.

Resistance test
- NRTI: M184V
- NNRTI: K103N
- PI: No resistance mutations
What will you discuss with Sandra?

- Tolerability
- Adherence
- Resistance test
- Medication
- Absorption
- Comorbidities

- Does Sandra have any questions/concerns?
Which regimen (NNRTI resistance)?

- BHIVA: switch to a new PI/b-based regimen with the addition of at least 1, preferably 2, active drugs
- NRTI resistance documented/likely: consider adding new active NRTIs/ARV(s) + PI/b
- Only M184V: recycling of NRTIs may be feasible
- RTG + PI/b as efficacious as PI/r regimen + at least 2 new/recycled NRTIs
Which regimen?

- Don’t go from EFV/NVP to ETR unless new combination including PI/b
- Switching to an INI (raltegravir, elvitegravir or dolutegravir) or maraviroc with two active NRTIs is an option but not recommended if RT mutations/previous NRTI virological failure
Case 3

• Mary is an 22 year old from Zimbabwe who has arrived in the UK 3 weeks ago. She was diagnosed aged 12 years and has received the following treatment regimens:

• D4T/3TC/EFV
• AZT/DDI/LPV/r
• TDF/FTC/DRV/r/ETV/RTG
• ABC/FTC/TDF/AZT (current regimen)
Case 3 continued

• After each switch Mary initially suppressed her viral load, prior to developing virological failure. Her current viral load is 6,490 copies/mL, CD4 count 120 cells/mm3. Mary says she has always missed multiple doses of ART as she has had trouble coming to terms with her diagnosis and does not like taking tablets. Her mother died 5 years ago from an HIV related infection.

• Resistance test results (including historical):
 – NRTI: D67N, T69AD, K70R, M184I/V/M, T215Y, K219Q
 – NNRTI: K103N, Y181C, E138Q/E, V179I/N/D/V

• Tropism: R5
What will you discuss with Mary?

- Tolerability
- Adherence
- Resistance test
- Medication
- Absorption
- Comorbidities

- Does Mary have any questions?
What will you discuss with Mary?

- Resistance MDT/virtual clinic/Stanford
- Co-trimoxazole prophylaxis & risk of OIs
- Psychological support
- Intensive adherence support: nurses/?DOT
- Newer agents: research trials, expanded access & named individual programmes
- Not to discontinue/interrupt ART: reduce risk of disease progression
Which regimen will you choose?

• NRTIs High level res: ABC/AZT/FTC/3TC
 Intermediate res: TDF

• NNRTIs High level res: EFV/NVP/RPV
 Intermediate res: ETR

• PIs High level res: ATZ/r, LPV/r
 Intermediate res: DAR/r

• INSTIs High level res: EVG/RTG
 Potential low level res: DTG
• Switch to a new regimen with at least 2 & preferably 3 fully active agents with at least 1 active PI/r (e.g. BD DRV/r, OD if no DRV mutations) & 1 one agent with a novel mechanism (INSTI/MVC/T20, ETR also an option based on viral susceptibility)

• Consider inclusion of NRTIs with reduced activity on genotypic testing will provide additional antiviral activity

• Not to add a single, fully active ARV

• With triple-class failure & raltegravir/elvitegravir selected integrase resistance, BD DTG should be included as part of a new regimen where there is at least one fully active agent in the background regimen
You don’t have Stanford in the exam-

- Most robust PI: BD DAR/r
- Most robust INSTI: BD DTG
- ? Recycle most robust NRTI: Truvada
- New agents: MVC (check tropism), T20

“The decision on the best drug regimen for you will need to be discussed at our resistance MDT but this is the regimen that I think that we are likely to advise you to start on…”
Top Tips

• Rehearse a ‘template’ for the station, use a mnemonic if it helps!
• Discuss: potential causes, potential implications, action and follow up.
• Always check patient concerns
• Every resistance station therefore virtually identical in what you need to do
• If you go blank, think what you’d do in real life: d/w consultant, MDT, Stanford
• If all else fails, give Darunavir/b!!
Acknowledgements

• Dr Emily Clarke
• Prof Ravinda Gupta

Good Luck!